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ABSTRACT

A major difficulty in interpreting coarse resolution satellite data in terms of land surface

characteristics is unavailability of spatially and temporally representative ground observations.

Under certain conditions rainfall has been found to provide an important proxy measure for

surface (soil-litter-vegetation) characteristics, and thus a relation between satellite observations

and rainfall might provide an indirect approach for relating satellite data to the surface

characteristics. Observations show that in areas where vegetation growth is limited due to

available water, long-term average rainfall could be a good predictor of productivity, fractional

ground cover or leaf area index of vegetation in the absence of anthropogenic impact. The

relation between rainfall over Africa and Australia and seven year average (1979-1985)

polarization difference (PD) at 37 GHz from the scanning multichannel microwave radiometer

(SMMR) on board the Nimbus-7 satellite is studied in this paper. Quantitative methods have

been developed and used to screen (accept or reject) PD data considering antenna pattern,

geolocation uncertainty, water contamination, surface roughness, and adverse effect of drought

on the relation between rainfall and surface characteristics. Three rainfall data sets have been

used in the present analysis (two data sets are for climatologic averages and one data set is for

1979-1985 averages), and no screening has been applied to these rainfall data. The screening

methods applied to the PD data do not a priori assume the existence of a relation between PD

and rainfall. The PD data has been screened considering only the location of rainfall stations,

without any regard to rainfall amounts. The present analysis based on quantitative data

screening confirms a non-linear relation between rainfall and PD published previously. The

atmospheric effect on the rainfall-PD relation is considered and it is. concluded that atmospheric

effect alone cannot explain the observed relationship.

1. INTRODUCTION

All field and aircraft observations of microwave emission intensity over snow-free land surface

and radiative transfer modeling have shown that the intensity at any polarization state for a

prescribed angle of observation is determined most prominently by surface temperature,

volumetric soil moisture, surface roughness and vegetation water content (Schmugge, 1985;

Matzler, 1991; Jackson and Schmugge, 1991; Ferrazzoli et al., 1992; Paloscia and Pampaloni,

1992). These studies have also shown that the rank ordering of the sensitivity of emission

intensity to soil moisture, surface roughness and vegetatiola is determined primarily by the

wavelength of observation: long wavelengths (say 21 cm) are more sensitive to soil moisture,



while shortwavelengths(say 1cm) aremoresensitiveto surfaceroughnessandvegetation
cover. While most effort have beendirected towards estimation of soil moisture using

microwave observations,several recent studies have focused directly on relating these

observationsover agricultural fields to leaf areaindex and water contentof crop canopies

(ChukhlantsevandShutko,1990;Matzler, 1991;JacksonandSchmugge,1991;Ferrazzoliet

aI., 1992; Paloscia and Pampaloni, 1992).

Monitoring of land surface vegetation and quantification of its characteristics (such as biomass,

leaf area index, stress and fractional cover) at regional and global scales are of significant

importance for a quantitative understanding of natural and anthropogenic changes of land

surface and land surface-atmosphere interaction through exchanges of energy, mass and

momentum. While field observations to quantify vegetation characteristics through microwave

observations are immensely valuable for development, clarification and validation of basic

concepts and methodologies, satellite observations are indispensible for regional and global

studies. The disparity of spatial scales involved in going from field observations (c. 100 m) to

satellite data (c. 30 km) presents the major difficulty in directly transferring the methodologies

developed through field observations to the satellite data. This disparity of spatial scales might

be addressed through aircraft observations from different altitudes and large-scale field studies,

but nevertheless remains an outstanding problem.

The feasibility of monitoring vegetation using passive microwave observations from satellites

has been investigated by Hallikainen et al. (1988), Kerr and Njoku (1990), Choudhury (1989,

1990), Reutov and Shutko (1990), among others. These studies have shown that

multifrequency dual-polarized observations can discriminate different vegetation types and

monitor seasonal and interannual changes, Much progress has been made towards

classification of land surface types using microwave observations from different satellites

(Ferraro et al., 1986; Neale et al., 1990; Grody, 1991).

Choudhury (1989), Prince and Choudhury (1989), Smith and Choudhury (1990) and Tucker

(1992) have studied the relation between rainfall and the difference of vertically and

horizontally polarized brightness temperatures (polarization difference or PD) observed at 37

GHz by the scanning multichannel microwave radiometer (SMMR) on board the Nimbus-7

satellite. Simulations using radiative transfer models have shown that 37-GHz PD depends

upon soil, litter and vegetation characteristics, such as fractional cover, leaf and stem area

indices (Choudhury, 1990; Choudhury et al., 1990). The spatial resolution of the SMMR 37-

GHz data is about 25 km, and, in the absence of spatially and temporally representative data for
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vegetation,rainfall wasconsideredasa proxy measurefor surfacecharacteristics.Several
studieshaveshownthatfractionalgroundcover,leafareaindexandproductivityof vegetation

could be relatedto rainfall or soil moisture,in areaswherewateravailability is the limiting

factor for vegetationgrowth(Terborgh,1973;Lieth, 1975;Grier andRunning,1977;Waring

et al., 1978; Eagleson, 1982; Eagleson and Tellers, 1982; Le Houerou, 1984; Eagleson and

Segarra, 1985; Woodward, 1987). Eagleson (1982) has put forward a formal theory for

ecologically optimum joint state of vegetation and soil towards which natural systems evolve in

a given climate. Eagleson and Tellers (1982) showed that fractional vegetation cover is

determined to a large extent by soil and climate, and Woodward (1987) has shown that leaf

area indices of different vegetation types predicted from water balance computation using

climatoIogic rainfall values are in accord with observations. Le Houerou (1989) notes that

biomass productivity of rangelands is directly tied to rainfall for a given plant community or for

a given geographical area over a number of years, but annual rainfall for a specific year is not a

good predictor of productivity (the ratio of the coefficient of variations of biomass production

and rainfall was found to be in the range 1.2 to 1.8). These studies suggest that the relation

between rainfall and surface characteristics is better defined when considered over a number of

years (when a steady state condition develops), although such a relation can be adversely

affected by drought or anthropogenic impact, as discussed below.

Choudhury (1989) found a statistically significant non-linear relationship between the PD

values averaged for 7 years (1979-1985) and climatologic mean rainfall for 76 locations over

Africa and Australia. Choudhury had argued that it is desirable to consider average rainfall for

several years because of the spatial variability of rainfall over the resolution area of PD (c. 25

km). For temporally coincident (1979-1985) PD and rainfall data over Botswana, Prince and

Choudhury (1989) found that 7-year mean rainfall was more closely related to PD than for

individual years. Smith and Choudhury (1990) found wide scatter (barely recognizable

relationship) when temporally coincident (May 1986-April 1987) monthly values of rainfall and

PD over Australia were plotted against each other. Any misregistration of PD pixel with respect

to the location of rainfall station can also introduce scatter in the PD-rainfall analysis,

particularly for monthly or annual values. Tucker (1992) found poor correlations for

temporally coincident data July-October (1982-1985) at 41 locations over arid and semi-arid

West Africa (Mali and Niger); the coefficient of determination ranged between 0.1 to 0.5 for

individual years and 0.31 to 0.45 for 1982-1985 (July-October) average, depending upon the

range of rainfall values considered in the regression. Tucker (1992) investigated the marked

difference between the poor correlation he found for the temporally coincident rainfall and PD

data sets and high coefficient of determination (0.88) reported by Choudhury (1989) by
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attemptingto reproduceChoudhury'sresults.Tuckerfoundwidescatterwhenall rainfall data

lessthan1600-mmannualvalueoverAfrica andAustralia(159locations)from Muller (1982)

were plotted against1979-1985averagePD. Choudhuryhad selected76 locations for his

analysisand therainfall datafor mostof theselocationswerefrom Muller (1982).These76

locationswereselectedsubjectivelyconsidering,(1) theeffectsof exposedwater(lakes,rivers
and swamps) and surface roughnesson PD (seep. 1579, 1585, 1588, 1592, 1599, in

Choudhury,1989),(2)high PDvaluesin someof thecoastalregions,which wereassumedto

bedueto land/watermixedpixels(seep. 1601,in Choudhury,1989),and(3)prior knowledge

of drought over the Sahel zone of Africa (see p. 1601, in Choudhury, 1989). These
considerationswere not detailedwhile presentingthe PD-rainfaUrelation, but were noted

elsewherewithin the paper(asannotatedabove).WhenTucker screenedthe PD pixels for
possiblewatercontaminationusingadigital database,only 25of theoriginal159stationswere

found to be further than 100km from standingwaterof somesort, andthedatafor these25

locationsalso did not showanyclearrelationbetweenPD and rainfall. Tucker (1992)also

foundthatPDpixelsareapparentlyunaffectedby inclusionof ariver or waterbody within the

pixel for hisWestAfrican locations.Basedon thesefindingsTucker(1992)concludedthatthe

relation betweenPD and rainfall reportedby Choudhury(1989)wasbasedupon selective
informationandthatPDis poorlycorrelatedwith rainfall.

Relationbetween1979-1985averagedPDandrainfall is reexaminedin thispaper.All rainfall
datacannotbeusedfor correlationwithPDbecause,(a) factorsotherthanvegetationaffectPD

values,and(b) relationbetweenrainfall andsurfacecharacteristicsunderdroughtconditions

(or anthropogenicpressure)couldbemuchdifferent from thatin theabsenceof drought(or

anthropogenicimpact).WhereasChoudhury(1989)had subjectivelyselectedrainfall stations

for hisanalysisof PD-rainfallrelationship,wehavedevelopedandusedquantitativemethods

to screen(acceptor reject)thePDdataconsideringantennapattern,geolocationuncertainty,

exposedwater,surfaceroughnessandlandsurfacechangedueto drought.Therationaleand

quantitativemethodsusedfor thesescreeningsarediscussedin the following section.The

presentanalysishasbeendoneusingthreerainfall datasetsfor Africa andAustralia;two data

setsarefor climatologicmeanrainfall,whileonedatasetisconcurrentwith thePDdata(1979-

1985averages).Climatologic rainfall datasetsare from Muller (1982) exceptthoseover

islandsandfrom LegatesandWillmott (1990).All rainfall datahavebeenconsideredbecause
there is no rationalefor setting a priori an upper or a lower limit on rainfall amount for

correlation with PD.

4



2. DATA AND METHODS

The SMMR on board the Nimbus-7 satellite was a conically scanning dual-polarized

radiometric system which has provided global observations at six frequencies from December

1978 to August 1987. All observations were acquired at a constant incidence angle of 50 ° and

at equator crossing times of local noon and midnight. Observations at two polarizations were

coincident for 37-GHz frequency, while the observations for five other frequencies were

acquired in alternate scans. The data analyzed in this paper are those acquired at local noon

equator crossing time. From vertically and horizontally polarized brightness temperatures we

have computed the polarization difference (PD), and the second lowest value of PD among all

the PD values available within a month at any location are kept for analysis. This selection

procedure for PD was applied to minimize the effects of soil moisture and clouds on the PD

values. In addition to this second lowest PD we have kept the brightness temperatures

associated with this PD. All brightness temperatures have been gridded into 0.25°x0.25 °

(latitude x longitude) cells by determining the radiometer beam center to be within this cell.

(Note that the beam center for the brightness temperature data within a cell is not necessarily

situated at the center of the cell). The geolocation uncertainty for the beam center has been

estimated to be about 12 km. Any missing pixel in the global data set due to unrecorded

(missing) orbits has been filled by spatial and temporal averaging. (These missing orbits were

particularly significant for a few months during 1986.) The global monthly data set was

subjected to a trend analysis to assess any systematic sensor degradation. This trend analysis

showed a systematic decrease of PD by about 0.013 K per month. The data set used in the

present analysis has been adjusted for this sensor degradation. The absolute accuracies of the

brightness temperatures have not yet been established due to difficulties in the precise sensor

calibration and determination of antenna temperatures (Hallikainen et aI., 1988; Choudhury,

1992). The PD values for 84 months (January 1979 to December 1985) at each location have

been averaged (arithmetic mean) for correlation with the rainfall data.

The PD data needs to be screened before correlation with the rainfall data because, (a) factors

other than vegetation affect PD, and (b) drought or anthropogenic impact can affect the relation

between rainfall and surface characteristics. The data have been screened at three levels

considering, (1) antenna pattern and geolocation uncertainty (Level 1), (2) surface roughness

and exposed water (Level 2), and (3) systematic land surface change (Level 3). The rationale

and quantitative methods used for these screenings are outlined below.
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The screeningmethodsappliedto the PD datado not a priori assume the existence of any

relation between PD and rainfall. The PD data has been screened considering only the location

of rainfall stations; rainfall amounts have not been used in any way for screening.

Level 1: The way a microwave radiometer measures the radiative energy emitted from the Earth

(which is conventionally reported in temperature units called brightness temperatures) and the

accuracy with which this pattern of measurement can be located on the Earth, put some

fundamental restrictions on the interpretation of radiometric measurements.

The instantaneous field-of-view (IFOV) 3-dB footprint of the SMMR 37-GHz radiometer was

about 27x18 km. While the IFOV was 27x18 km, the effective field-of-view (EFOV) 3-dB

beamwidth, taking into account the data integration time on board the satellite, was about

27x27 km. The antenna received 6 percent of the total radiative energy from the area

determined by 3-dB beamwidth, and of the remaining 4 percent about 3 percent of the energy

came from an area 2.5 times the area for 3-dB beamwidth and 1 percent from a much larger

area. (These fractional energy received from different areas are determined by the radiometer

antenna pattern.) Thus, about 70x70 km area contributed to 9 percent of the energy received by

the SMMR 37-GHz antenna. This larger area contributing to the energy received by the antenna

has a significant bearing on the interpretation of observations over radiometrically highly

heterogeneous regions, like the coastal regions. Water is very cold when observed at

horizontal polarization (brightness temperatures are typically 130-140 K as could be determined

from Fresnel equation) and has a much higher polarization difference (about 60 K) as

compared to land surface (horizontal brightness temperatures are typically 240-280 K and

polarization difference 5-30 K). Thus, the antenna energy for 37-GHz observations over land

with beam centers within 35 km of land/ocean boundary was a composite of energy received

from land and water surfaces, recognizing that 9 percent of the energy received by the antenna

was from 70x70 km area. Alternately, two 0.25°x0.25 ° land pixels on the coastal areas will

always have brightness temperatures (and PD) representing the energy received from both land

and ocean surfaces. These two land pixels are radiometricaUy mixedpixels due to the antenna

pattern having signatures of both land and water, although water may not be present within

these pixels. The rainfall data for all stations situated within two pixels from any ocean

boundary would have to be excluded from correlation with PD because these PD values cannot

be considered representative of only the land surface characteristics. The effect of water

contamination due to antenna pattern may also appear in the third land pixel away from water

boundary due to geolocation uncertainty of the PD data (as discussed below) and mismatch of
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the land/waterboundarywith thepixelboundary,in whichcasethefirst pixel borderingwater

wouldbeamixedpixel in the literalsensedueto fractionalcoverageof bothlandandwater.

Figure 1showstheobservedpixel valuesof SMMR 37-GHzPDfor two regionsoverAfrica

containinglandandocean,illustratingtheeffectof watercontaminationof landpixelsdueto

antennapattern(radiometricallymixedpixels).Note that thePD valuesof two or threeland

pixels bordering water are systematicallyhigher than thoseappearingfurther inland. As
discussedabove, the PD over water is about 60 K, while it is 5-30 K over land and

consequentlya radiometricallymixedpixel will haveintermediatePD values.The effectof

antennapatternin increasingthePD valuecouldbe seenmoreclearly for vegetatedsurfaces

borderingwatercomparedto desertareasbecauseof largerdifferencebetweenthePD values

for water (c. 60 K) anddenselyvegetatedsurfaces(c. 4-5 K) vs.deserts(c. 25-30K). These

high PD valuesborderingoceancannotbeconsideredrepresentativeof only the landsurface
characteristics,sincethe antennareceivedenergyfrom both oceanand land. These mixed

pixels bordering ocean must be excluded from any study of land surface characteristics using

the SMMR 37-GHz data.

Now, consider the 0.25°x0.25 ° pixel in which a particular rainfall station is situated. The

antenna beam center for the brightness temperatures which was gridded into this pixel may not

actually be situated within this pixel because of the geolocation uncertainty of the beam center

(c. 12 km). Similarly, the brightness temperatures whose beam centers were actually situated

within this pixel got gridded into one of the neighboring pixels. Considering these

misregistrations it is more appropriate to consider an average PD value of nine pixels (3x3

matrix) centered on the rainfall station rather than the PD value for the pixel containing the

rainfall station. We have used an average value of nine PD pixels for correlation with the

rainfall data.

The data screening due to proximity of a rainfall station to oceans and geolocation uncertainty

for beam center (gridding error) is illustrated in figure 2. This figure shows a rainfall station

which is situated three pixels away from any water pixel, 3x3 matrix centered on the rainfall

station and radiometrically mixed pixels (two pixels bordering water pixels). In this figure there

are no mixed pixels in the literal sense (pixels containing both land and water).

To screen the PD data for antenna pattern and geolocation uncertainty, we have used a digital

data set (developed by H. W. Powell and Y. L. Chien from a contour plotting package called

WOLF-PLOT resident on the IBM mainframe computer at Goddard) which identifies major
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waterbodiesandlandmassinto threesurfacecategories,land,waterandmixed (land/water)

coastalregionat 0.25° resolution registered to and used for processing the PD data (see fig. 1).

We have rejected the PD data corresponding to all rainfall stations for which a water pixel can

be identified within 9x9 matrix centered on the rainfall station (fig. 2). (The number of stations

passing each screening is given in Table 3, further discussed below.) There was no observer

bias or fine tuning involved in this screening. Also, this screening does not a priori assume the

existence of a relation between PD and rainfall.

Tucker (1992) screened rainfall stations based on their distance "from water of any sort" as 45

and 100 km without stating the rationale for choosing these distances. We find from the above

discussion that neither of these distances can be justified for the processed PD data used by

Tucker.

Level 2: The PD data needs to be screened for variations introduced by rough terrain, built-up

area and exposed water from rivers, lakes or dams.

Theoretical studies and field observations over bare soils have demonstrated that polarization

difference decreases and horizontally polarized brightness temperature increases as the surface

roughness increases, and an important parameter controlling the effect of roughness is the ratio

of root mean square surface height and the wavelength of microwave radiation (Beckman,

1968; Schmugge, 1985; Choudhury, 1989). At coarse spatial resolution of the satellite data

there could be a range of roughness scales (small-scale surface undulations to large topographic

variations) and the relative impact of these scales on the brightness temperature has not yet been

quantified. Nevertheless, from basic physical consideration, mountainous areas with little or no

vegetation are expected to impact PD because PD is sensitive to the incidence angle (i.e., the

angle between the direction of observation and normal to the surface). The incidence angle for

mountainous areas is a spatially variable parameter due to changes in the surface slope (the

effective incidence angle at any location could be greater or less than 50 ° depending upon slope

and aspect of the location). Field observations at 37 GHz illustrating the sensitivity of

brightness temperatures and PD to the incidence angle for bare and vegetated soils are shown in

figure 3 (Wang et aL, 1982), and similar angular dependencies have been observed at other

microwave frequencies (cf., Mo et al., 1982). It is seen that PD depends strongly on the

incidence angle for bare soils, while it is rather insensitive for vegetated soils. Surface

roughness also introduces polarization mixing (which decreases the PD value) because the

rectangular coordinate system needed to specify the polarization states cannot be defined

uniquely due to variations in slope and aspect (Beckman, 1968; Choudhury, 1989). Thus,
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topographicvariationcanaffect themagnitudeof PD of individual pixelsandcan introduce

pixel-to-pixelvariationsfor bareorpartiallyvegetatedsurfaces.A mountainousareawill havea

lowerPD comparedto a smoothsurfacewhenbothsurfacesaredevoidof anyvegetationdue

purely to surfaceroughnesseffect. However, this surfaceroughnesson PD is expectedto

decreaseastheterraingetsvegetatedbecauseof thediffusenatureof vegetationcanopywhich

emitslargelydepolarizedradiation(fig. 3andMatzler, 1991).Althoughaquantitativemethod

for detectingtheeffectof surfaceroughnesson PDasaterrainchangesfrom bareto densely

vegetatedhasnotyet beendeveloped,terrain roughness alone (as might be determined from a

digital elevation model) should not be used as a sufficient condition for rejecting the PD data

for roughness effect. The complementary nature of the effects of surface roughness and

vegetation on PD has been discussed by Choudhury (1989).

Exposed water within a pixel can decrease horizontal brightness temperatures and increase PD

(Choudhury, 1989). The effect on PD of lakes and rivers within a pixel will be determined by

the fractional area of water actually visible to the sensor (SMMR) from the incidence angle of

50 ° (Choudhury, 1989). For example, when the observations are being made perpendicular to

a river lined with 10-m-high trees on the river banks, then the width of the river needs to be

greater than about 12 m for SMMR to see any exposed water. Thus, the effective fractional

area of exposed water could be much less than the fractional area determined from nadir

observations. Consequently, to assess the effect of lakes and rivers on the observed brightness

temperatures and PD using a digital database one will need additional information about the

angle of observation with respect to the orientation of the water bodies and the nature of

vegetation surrounding the water bodies. Also, calculations using equation (16) of Choudhury

(1989) show that for forested areas, about 1.8 km 2, and for arid areas, about 2.9 km 2 of

exposed water within a 0.25°x0.25 ° pixel needs to be visible to SMMR for PD to change by

0.15 K, which is about the rms error of PD. Thus, a river crossing a pixel needs to be 70-100

m wide (effective width visible to the sensor) to affect PD by about the rms error. Atmospheric

effects could further increase the uncertainty to about 0.5 K in PD, which will increase the

effective width of exposed water needs to be visible to the sensor for detectable effect. The

fractional coverage of exposed water needs to be higher to achieve similar rms error when

average PD value of 9 pixels (3x3 matrix) is considered for correlation with the rainfall data.

These calculations show that presence of any sort of water within a pixel should not be used as

a sufficient condition for rejecting the PD data for water contamination. Tucker (1992) had

rejected rainfall stations based only on the proximity of the stations to "water of any sort,"

which, based on the above discussion, we think is inappropriate. Nevertheless, exposed water

from many rivers, lakes and dams can have noticeable impact on PD.
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The effects of surfaceroughnessand exposedwater on PD and horizontally polarized

brightnesstemperatureasdiscussedaboveare illustrated in figures 4 (a and b) using the

SMMR 37-GHzobservations.Thesefigures showthe pixel valuesof PD and horizontally
polarizedbrightnesstemperaturegoingacrossAir mountainwithin Sahara(fig. 4a)andacross

Zaireriver andLakeLeopoldII (fig. 4b).Onecanseethatin goingacrosstheAir mountainthe

PDdecreasesandhorizontallypolarizedbrightnesstemperatureincreases,while goingacross
exposedwater the PD increasesand the brightnesstemperaturedecreases.Theseare the

expectedeffectsof roughterrainandexposedwateronPD andthebrightnesstemperature.

Theabovediscussionandexamplesprovidetherationalefor screeningthe PD data for effects

of surface roughness and exposed water. If this screening is not done then the PD value

corresponding to a rainfall station would be higher when the pixel is contaminated with water,

and it will be lower when affected by surface roughness compared to the possible value in the

absence of these effects. We have not yet been able to develop a method for detecting these

effects on the SMMR data from theoretical consideration, and even when such a method is

developed, it will almost certainly require fairly detailed quantitative data on surface

characteristics (river width and surrounding vegetation height and density, etc.), which is not

currently available. Recognizing the complementary nature of PD and horizontally polarized

brightness temperature with respect to their responses to roughness and exposed water (fig. 4)

we developed a data set of normalized polarization difference (NPD) as the ratio of PD and

horizontally polarized brightness temperature. Pixel-to-pixel variations of roughness and

fractional area of exposed water can introduce spatial variations in NPD, as could be

determined from fig. 4. Thus, as an index for spatial variability we computed the ratio (V;

variability index) of the highest and the lowest pixel values of NPD occurring within the 3x3

matrix centered on a rainfall station. Table 1 gives the calculated values of the variability index

(V) for all rainfall stations in Africa from Muller (1982) which passed Level 1 screening, while

examples of 3x3 matrix of NPD for several locations in Table I are shown in fig. 5 (see Table

3 for the number of stations rejected at this screening). Geographical setting of rainfall stations

assessed subjectively from atlases (The Times Atlas and National Geographic Atlas) and

rainfall values from Muller are also given in Table 1.

The effect of exposed water for Eala and Kinshasa (situated on the bank of Zaire river), Harar

and Ar-Rusayris (situated close to large dams) and Tshibinda (situated close to Lake Kivu) is

seen to produce about a factor of two variation in the 3x3 matrix of NPD and resulting in high

values for V (fig. 5 and Table 1). The NPD value of the pixels affected by exposed water is
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higher compared to those not affected in fig. 5. Exposed water has less noticeable impact on

the spatial variation of NPD and the resulting value for V for stations situated in arid regions

(see AI Uqsur and Dunqulah in Table 1 and fig. 5). Effect of exposed water on NPD and V is

also not clearly seen for many other stations, for example, Garissa, situated on the bank of

Tana river (see Table 1 and fig. 5). Although we do not have information on river width at AI

Uqsur, Dunqulah or Garissa, it is possible that the width at these locations is not sufficient to

have a detectable impact on NPD and V. The calculated low values of V for Jima, Dagoretti and

Morogoro situated in mountainous areas could be because of vegetation covering the terrain,

recognizing the observed high rainfall values for these stations (900-1500 mm).

Examination of Table 1 and figure 5 also shows some limitations of screening rainfall stations

using the variability index. We see that stations, like Bobo Dioulasso and Jos, situated away

from mountainous areas or water bodies have fairly high V values. Both of these stations have

fairly high rainfall and thus are expected to be densely vegetated. The 3x3 matrix of NPD for

Bobo Dioulasso (fig. 5) shows a systematic north-to-south pattern of decreasing NPD values,

possibly in response to the known rainfall gradient (Le Houerou, 1989). These examples show

that factors other than surface roughness or exposed water can introduce spatial variations in

NPD, leading to a high value for V.

Screening for roughness and exposed water could be achieved by setting a cutoff value for V to

accept or reject a rainfall station, although we recognize the limitation that variations in soil and

vegetation can also introduce spatial variability. The data in Table 1 provide some guidance for

choosing a cutoff value (s) for V, although much caution is needed. Geographical setting of

locations given in Table 1 (rough terrain or water bodies) has been assessed subjectively from

atlases, and it was found that these settings could not be reproduced identically under repeated

blind trials due partly to difference among atlases and the subjective nature of the assessment.

Even when the geographic setting could be prescribed unequivocally, this setting alone does

not completely describe the impact on PD; we need to consider the effective area of exposed

water and vegetation covering on rough terrain. Keeping these cautions in mind, we note that

about 2 percent of all rainfall stations have V values greater than 1.30, while 5 percent of the

stations have V values greater than 1.20. In both of these cases the proportion of stations

situated close to water or rough terrain is higher compared to stations situated away from such

areas, which suggests that V index has some merit for screening rainfall stations situated in

mountainous areas or close to water bodies.
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Thedatain Table 1 is for isolatedlocationsasgiven in Muller (1982).However,thepresent
screeningis attempting to identify rainfall stationssituated close to rivers, lakes, and

mountainousareas,which appearas spatial featuresrather than isolatedpoints in a map.

Therefore,we wantedto seewhetherscreeningusingacutoff valuefor V canidentify spatial
featuresrelatedto roughterrainor exposedwater.

A shadedmapof pixeI-by-pixel binary classification(acceptor rejectbasedon a cutoff V

valuesof either 1.25or 1.3)for Africa, MiddleEast,andpartsof Europeareshownin figure
6. A V valuewascomputedfor eachpixel in thismapfrom 3x3matrixof NPDcenteredon the

pixel, exceptfor thosepixels for which awaterpixel wasdetectedwithin the 3x3matrix (see

Level 1 screeningfor detectionof waterpixels). In fig. 6 one can seethat high V values

generallyappearin mountainousareasandcloseto waterbodies.The appearanceof spatial
features in this figure may be comparedwith those found in atlases.Perhapsthe most

prominentfeature is theappearanceof Zaireriver andits maintributaries(UbangiandKasai
rivers).OnecanalsoseeTibesti,Air andAhaggarmountainswithin Sahara,themountainous

areaof theEasternDesert,Namib Desert,Atlas-Saharienmountainsin the Mediterranean

northernAfrica, thehighlandsof Ethiopia,andKenya.OkavangoDelta andMakagadikgadi
saltpanin southernAfrica appearclearly and also LakeVolta,LakeKossou,andtheentrance

of Niger River in the Gulf of Guinea.Many rivers, for exampleTana,Nile, Zambeze,and

Orange,do not appearclearly in this figure. RegionsaroundKufra OasisandHamadade

Tinrhert within Saharaareseento havehighvaluesof V. It is important to note in thisfigure

that accept/reject criterion does not appear as randomly distributed points over this map and

thus screening using a cutoff value of V is not likely to result in accepting or rejecting rainfall

stations totally randomly. The present screening is fairly capable of identifying spatial features

related to rough terrain and exposed water, which is the objective of this screening.

We have used the variability index V to screen for surface roughness and exposed water,

although we recognize its limitations. Since it is difficult to establish an unique cutoff value for

V, we have studied two cases as: (a) rejecting the PD data for all rainfall stations for which V is

greater than 1.249 (referred to below as Level 2A screening), and (b) rejecting the PD data for

which V is greater than 1.20 (referred below as Level 2B screening). A comparison of results

based on Level 2A and Level 2B screenings would provide an appraisal of the sensitivity of

any relation between PD and rainfall to this data selection criterion. The Level 2B screening

puts a more stringent restriction on the selection of rainfall stations (lower spatial variability),

and the stations selected under Level 2B will be a subset of the stations selected under Level

2A. As the cutoff value of V is increased more stations situated close to water or in rough
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terrain will passthescreeningandthuswill appearascandidatesin relatingPD to rainfall;

scatterin anyrelationbetweenPD andrainfall is expectedto increasewith increasingcutoff

valueof V. Therewouldcertainlybesomenaturalvariabilitiessurroundingtherainfall stations
andthereforea lower limit on thecutoff valueof V associatedwith suchvariabilities. If one

acceptsthe subjectivedesignationof terraincharacteristicssurroundingthe rainfall stations

given in Table 1(rough,water,andhomogeneous)thenthe mean(standarddeviation)of V
valuesfor stationssituatedin homogeneousareais foundto be 1.175(0.066).Thus,a cutoff

valueof V as1.2appearsto berepresentativeof theaveragevariability inhomogeneousareas.

Screeningof rainfall stationshasbeendoneby calculatingtheindex V consideringonly the
locationof rainfall stations;nootherinformationhasbeenusedfor screening.From thedatain

Table 1,which is for all stationsin Africa from Muller (1982)passingLevel 1screening,one

canverify thatthevariability indexhasnorecognizablerelationwith rainfall. Althoughthereis
aclear rationaleto screenrainfall stationsdueto roughnessandexposedwater, the present

screeningprocedureis not totally satisfactorybecausespatialvariationsof vegetationor soil
characteristicscanalsogive highvaluesof V, asdiscussedabove.

Note that the nine PD (or NPD) values in the 3x3 matrix are not totally independent

observationsbecauseof geolocationuncertaintyand70x70km areacontributingto 9 percentof

the radiativeenergyreceivedby the SMMR 37-GHzantenna,which introducedifficulty in

interpreting standarddeviation or coefficient of variation as reliable measuresof spatial

variability. Although the variability index, V, provides a quantitative approach for data

screening, further research is highly desirable to differentiate natural variabilities of soils and

vegetation from those due to topography and exposed water.

Level 3: It is rather well known that the Sahel and Sudan zones of Africa were under a severe,

long-term drought during the period of our satellite data (Nicholson, 1985; Dennet et al.,

1985). The occurrence of drought can adversely affect soil, litter and vegetation so that the

relation between rainfall and surface characteristics under drought conditions could be much

different from that in the absence of drought. Anthropogenic causes can also affect rainfall-

vegetation relationships (e.g., clearing of forested land to pasture or urban land significantly

changes the surface characteristics without significant rainfall). It is important to distinguish the

areas affected by long-term drought or anthropogenic causes from the unaffected areas when

rainfall is being used as a proxy for the surface characteristics.
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Thereis ampleevidencethatwaterdeficit canaffectvegetationphysiologicalprocessesbothon
short-andlong-timescales(hourto year)asdiscussedby Crafts(1968),Gates(1968),Zahner

(1968), Levitt (1980), amongothers.The Sahelzonehasexperienceddeficit rainfall since

1970.Severalconsecutiveyearsof rainfall deficit canhavea rathersevereimpact on the
surfacecharacteristics,particularly underanthropogenicpressure(Katz and Glantz, 1977;

Hare, 1985; Williams and Calaby, 1985;Rapp, 1986; Le Houerou, 1989).Drought can

desiccateland,induceacceleratedsoilerosionanddisappearenceof litter andcancausemajor
changesin thevegetationcharacteristics(speciescomposition,fractionalcoverand leafand

stemareaindices).Therehavebeenheavymortalitiesof woodyvegetationin theSahelzone

northof the 16° latitudeduring the 1983-1985drought(LeHouerou,1989).Returnof a year

of excess rainfall following several yearsof rainfall deficit is not expectedto restore

immediatelythesurfacecharacteristics;treesthatdiedor litter decomposedduringthedrought
period may requireseveralyearsto be restored. Le Houerou(1989)wrote that under the

currentconditionsof increasinganthropogenicpressure,theSahelwill probablyneverrecover

from therecentdroughtof 1970-1984.An implicationof therecentSaheldroughttogetherwith
the prevailing anthropogenicpressureis that the relation between rainfall and surface

characteristicswhich existedbeforethe droughtmay not be realizedfor manyyearsin the
future (perhapsnever be realized). Changesin the surfacecharacteristicsmay not be

proportionalto or synchronouswith thechangesof rainfall, andthusrainfall maynot always

providearepresentationof vegetationevenwhenaveragedoveranumberof years.

Figure 7, from ChoudhuryandNicholson (1992),showrainfall deficit percent(departure

from climatologic mean),PD, and visible reflectance(derived from observationsby the
advanced very high resolution radiometer on board NOAA satellites) for two areas,

respectively,within the Saheland Sudanzones.Although one canseeanoverall trendof

higherrainfall deficit beingcorrelatedwith higherPD andvisiblereflectance,there are major

systematic inconsistencies in this correlation. While maximum rainfall deficit for both regions

occurred during 1984, the PD values attain their maximum during 1985 for both regions; the

visible reflectance also attains its maximum value during 1985 for the Sudan zone, while it

occurs during 1984 for the Sahel zone. Apart from this major inconsistency in the relation

between rainfall deficit and independent satellite observations, one can also see that year-to-

year changes of these satellite data are not proportional to the changes in the rainfall deficit. For

example, rainfall deficit during 1986 over the Sudan zone is comparable to that during 1981,

but PD during 1986 is comparable to that during 1984. Rainfall deficit over the area within the

Sahel zone during 1986 is seen to be less than that during 1982, but both PD and visible

reflectance during 1986 are higher compared to that during 1982. The adverse effect of drought
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on the surfacecharacteristicsis clearlyseenin thesetwo independentsatelliteobservations.

Drought over the Saheland Sudanzonesstartedin 1970andcontinuedthroughthe study

period, andmuchhasbeenwritten on humansufferingand large-scalechangesof the land

surfacebothdueto droughtandanthropogenicimpact(Hare,1985;Le Houerou,1989).Here

it is pertinentto notethat therainfall dataduringJuly-October,1982-1985in Mali andNiger

usedby Tucker (1992) for correlationwith PD wereunder this droughtcondition over the
Saheland Sudanzones.Tucker (1992)had alsoanalyzedrainfall data from Muller (1982)

includingstationswithin thisdroughtaffectedareawithout anyjustification, eventhoughthe

rainfall valuesgiven in Muller wereknownto beunrealisticfor the periodof satellitedata.

Choudhury(1989)hadexcludedstationssituatedwithin theSahelandSudanzonesbecauseof

prior knowledgeof drought,butnoquantitativecriteriawasappliedto theselectedstationsto
determinethe occurrenceof drought,asbeingappliedhere,Thepoor correlation found by

Tucker(1992)mightbedueto shortertimedurationfor hisanalysis,ashasbeennotedabove

and found by Smith andChoudhury(1990)andPrinceandChoudhury(1989).We find the
correlationbetweenPD andrainfall overtheSahelandSudanzonesto besubstantiallyhigher

than that found by Tucker (1992)when 1979-1985averagerainfall datais considered(see

below).

As aquantitativeindicatorfor landsurfacechange,wehavecomputedtheslopeof themonthly
PDvaluesfrom January1979to December1985for all rainfall stationswhichpassedtheLevel

2 screening.Then,wehaverejectedthestationsfor whichtheslopewasnot zeroat 9-percent
confidencelevel (Student'st test).There is no firm rule for setting the confidence level for

testing a hypothesis (Acton, 1963). Thus, while screening could be achieved by setting any

confidence level, we had set the level at 9 percent without examining the result for any rainfall

station so as to avoid any observer bias or fine tuning in this Level 3 screening. The slope of

the regression for all stations in Muller (1982) which passed the Level 2A screening but was

rejected at Level 3 screening is given in Table 2 (see Table 3 for the number of stations passing

Level 3 screening). This table also gives the results for screening at 99-percent confidence level

for comparison purposes only. These rejected stations are seen to be generally situated in the

drought affected areas of northern and southern Africa. Only two stations, Mut and A1-Kufrah,

are seen to have negative slopes; the slope for Mut is not significantly different from zero,

which is not the case for A1-Kufrah. A negative slope for these desert locations (see Table 1 for

rainfall values) would signify anthropogenic impact towards irrigated crop production, and

indeed, Libya is known to have invested a very significant income from oil towards irrigation

using water from the Kufrah oasis (Metz, 1989). The higher the confidence level, the more

stringent is the restriction for rejecting a station (see Table 2). By this screening we are
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choosingrainfall stationsfor whichthesurfacecharacteristicshavenotchangedsystematically

for theperiodof oursatellitedata.We areassumingthatrainfall valuesfor stationswherethe

surfacecharacteristicsarein asteadystate(zeroslopefor PD)mightbeconsideredto providea

proxy measurefor suchcharacteristics(Woodward,1987;Le Houerou,1989).Year-to-year

fluctuationof rainfall amountaboutthe long-termmeanis lesslikely to introducea systematic

land surfacechangethana prolongeddroughtand/oranthropogenicimpact (Williams and

Calaby, 1985; Schlesinger et al., t990). Note that rainfall stations are being screened using the

PD data considering only the station location and not the rainfall amount.

Trend analysis has been applied to rainfall data to demonstrate systematic changes of rainfall

over the Sahel and Sudan zones (cf., Adejuwon et al., 1990). We are applying trend analysis

to the PD data to assess systematic changes of land surface, although recognizing that a general

validity of trend analysis to detect land surface change due to drought or anthropogenic impact

has not yet been demonstrated. The climatologic mean values of rainfall given in Muller (1982)

do not allow one to assess the occurrence of drought for any location for the period of our

satellite data. A screening based on PD data can be applied uniformly to all three rainfall data

sets (described below).

The rainfall data used in the present analysis are climatologic mean values and also those

concurrent with the PD data. All rainfall data for Africa and Australia from Muller (1982) have

been considered except those for island locations. The total number of stations for Africa is 159

and for Australia is 39. A nominal check for the accuracy of station locations was made, which

showed typographic errors for one location in Australia (Perth) and three locations in Africa

(Tindouf, Adrar, and Luderitz). The number of stations passing different levels of screening

are given Table 3.

The other climatologic mean rainfall data set used in this analysis is that of Legates and

Willmott (1990). This data set was provided to us by Prof. Willmott (University of Delaware,

Newark, USA), and contains mean mon'chly rainfall values as observed and also after rain

gauge correction. To be consistent with Muller's data, we have used the observed rainfall data.

We have used all rainfall data for Africa and Australia and no editing has been done to these

data. The total number of stations for Africa and Australia are, respectively, 3406 and 618. The

number of stations passing different levels of screening are given in Table 3.

Rainfall data for the period 1979-1985 for Africa were provided by Prof. S. E. Nicholson

(Florida State University, Tallahassee, USA) and the data for Australia were acquired from
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Bureauof Meteorology(Melbourne,Australia).Bothof theserainfalldatasetscontainmonthly
rainfall. We haveusedrainfall datafor all stationswith completerecords(i.e., dataavailable

for eachmonthfor 1979-1985)to compute7-yearaveragevalues.Thetotal numberof stations

for Africa and Australia are, respectively,216 and 4221. The numberof stationspassing

differentlevelsof screeningaregivenin Table3.

It shouldbenotedthat vastlydifferentnumberof datavalues(or stationlocations)for Africa

andAustraliaappearingin LegatesandWillmott (1990)andtheconcurrentrainfall datasets,
and both of thesedatasetsaresignificantly morecomprehensivethanMuller (1982) with

respect to the total number of stationswhen both continentsare combined.While many
locationsarecommonin thesedatasets,therearealsomanydifferences,at leastbetweenthe

datasetsof LegatesandWillmott (1990)andtheconcurrentrainfall (seethenumberof station

for Africa andAustraliagivenin Table3). Thus,to adegree,thesedatasetsareindependent.

Thedatasetof Muller (1982)wasaimedto achieveasuniformadistributionaspossibleacross

theearth.

Most importantly,therewasnobiason ourpart in theselectionof either stationlocationsor
rainfall amountat theselocationsappearingin any oneof theserainfall datasets,and no

screeninghasbeenappliedto anyoneof therainfall data(all rainfall datahavebeenusedas

describedabove).The quantitativemethodsof screeninghavebeenappliedto the PD data

consideringonly the locationof rainfall stations;therainfall amountswerekept "blind" for all

screenings.No observerbiasor fine tuningis involvedin eitherLevel 1or Level3 screenings.
Uncertainty in thescreeningat Level 2 hasbeenrecognizedandits effectwill be addressed

throughsensitivityanalysis.Noneof thescreeningsa priori assumed the existence of a relation

between PD and rainfall. All PD data which pass these screenings will be used to assess

possible relation between PD and the rainfall amount. The results are given the following

section.

3. RESULTS AND DISCUSSION

Figures 8-13 show the scatterplots of PD and rainfall after different Levels of screening for the

three rainfall data sets, and the results of statistical analysis based on the data passing Level 3

screening are given in Table 4.
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Figure 8 (a-d) show scatter plots of PD and rainfall over Africa and Australia as given in Muller

(1982). The rainfall values are climatologic mean and not concurrent with the period of PD data

(1979-1985). These figures show rainfall values up to 1750 mm, although we have analyzed

the data for all stations except those on the islands. Figure 8 (a-d) show, respectively, the data

without any screening (for Africa only), after Level 1, after Level 2A and after Level 3

screening. The number of stations at each level of screening are given in Table 3. The scatter

decreases in going from fig. 8a to 8d.

Figure 8a shows the data for Africa before Level 1 screening, and much of the scatter in this

figure is due to inclusion of stations situated close to ocean which have high PD values, as has

been illustrated in figure 1. This scatter is considerably reduced by exclusion of coastal stations

(Level 1 screening) as seen in figure 8b. The results of excluding stations due to effects of

surface roughness and exposed water on PD (Level 2A screening) are shown in figure 8c,

while the results after exclusion of stations due to land surface change (Level 3 screening) are

shown in figure 8d.

The data in figure 8d suggest a highly non-linear relation between rainfall and PD. Choudhury

(1989) had found a statistically significant (r 2 = 0.88) relation between PD and rainfall (P in

rnm) as:

PD = 6.2 + 20.3 exp (-0.0035 P) (1)

When the data in fig. 8d (36 stations for Africa and 4 stations for Australia) were subjected to a

linear regression with exponential rainfall function as in eqn. (1), exp (-0.0035 P), the result

was:

PD = 5.2 + 20.6 exp (-0.0035 P) (2)

with the explained coefficient of variation (r 2) being 0.91 and standard error of estimate being

2.1 K. The slopes of eqns. (1) and (2) do not differ, but intercepts do differ at 9-percent

confidence level under t test.

Figure 9 (a-c) show scatterplots of PD and climatologic rainfall from Legates and Willmott

(1990), in sequence, after Level 1 (fig. 9a), after Level 2a (fig. 9b) and after Level 3 (fig. 9c).

This climatologic rainfall data set is significantly more comprehensive compared to that of

Muller (1982), as is apparent from Table 3. When the data in figure 9c (726 station from Africa
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and 158 stations from Australia) was subjectedto a linear regressionanalysiswith the

exponentialrainfall functiontheresultwas(seeTable4for statistics):

PD = 5.5+ 20.6exp (-0.0035P) (3)

with theexplainedcoefficientof variation(r2)of 0.84andstandarderrorof estimateof 1.7K.

Figure 10 (a-c)show scatterplotsof PD andrainfall averagedfor theperiod 1979-1985,in

sequence,afterLevel 1(fig. 10a),Level 2A (fig. 10b)andLevel 3 (fig. 10c)screenings.The
numberof stationsat eachlevelof screeningaregiveninTable3.Unlike figures8 and9,both

PD and rainfall valuesareaveragedfor the sameperiod in figure 10.We haveanalyzedall

available data, although these figures show the data valuesup to 1750 mm rainfall. A

comparisonof figs. 10band 10cshowsa significantly larger numberof datavaluesfrom
Australiawith rainfall lessthan500 mm remainafterLevel 3 screening.This is becausethe

databasefor Australiais eighttimeslargerthanthatfor Africa atLevel2A screening(Table3)

andalsosemi-aridregionsof Australiahavenotbeenunderadroughtconditionsimilar to that
for the SahelandSudanzonesof Africa. Whenthe datain figure 10c(54 stationsfor Africa

and654 stationsfor Australia)weresubjectedto alinear regressionanalysiswith exponential

rainfall functiontheresultwas(seeTable4):

PD = 5.1+ 20.1exp(-0.0035P) (4)

with theexplainedcoefficientof variation(r2) being0.81andstandarderrorof estimatebeing

1.30K. The slopesof eqns.(1) and (4) do not differ, but interceptsdo differ at ?-percent
confidencelevel. The intercept and the slope of eqns. (2) and (4) do not differ at ?-percent

confidence level.

The results presented in figure 8 (c and d), figure 9 (b and c), and 10 (b and c) are for rainfall

stations which have the spatial variability index (V) less than or equal to 1.249 (see Level 2

screening in previous section). When the Level 2 screening was done by setting a lower value

of V, namely 1.20 (Level 2B) then the number of paired (PD and rainfall) data points

decreased, and this selected data is a subset of that selected with the higher cutoff for the V

value. Corresponding to figure 8 (c and d) we have figure 11 (a and b) for Muller's data

showing the scatter plot when the rainfall stations were selected with V less than or equal to

1.20 (Level 2B screening). A linear regression analysis of data values in figure 1 lb (28

stations for Africa and 3 for Australia) with exponential rainfall function gave:
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PD = 5.0+ 22.6exp (-0.0035P) (5)

with r2 = 0.96 andstandarderrorof estimate1.52K. Theslopesof eqns.(1) and(4) donot

differ, but interceptsdodiffer at9-percentconfidencelevel.The slopesandinterceptsof eqns.

(4) donotdiffer at9-percentconfidencelevelfrom thoseappearingin eqns.(2)or (3).

Similarly, weobtainfigure 12(aandb) undertheLevels2B and3 screeningcorrespondingto

figure 9 (b andc) for climatologic rainfall dataof LegatesandWillmott (1990).Regression

analysisof datain figure 12b(573stationsfrom Africa and115stationsfrom Australia)gave

(seeTable4):

PD = 5.3+ 21.1exp (-0.0035P) (6)

with theexplainedcoefficientof variation(r2) of 0.84andstandarderrorof estimateof 1.6K.

Similarly, weobtainfigure 13(aandb) correspondingto figure 10(b andc) for theconcurrent

datasetsof PD andrainfall undertheLevels2B and3 screenings.Regressionanalysisof data

valuesin fig. 13b(43stationsfor Africa and507stationsfor Australia)gave(seeTable4 and
figure 14):

PD = 5.1÷ 20.5exp(-0.0035P) (7)

with r2= 0.82andstandarderrorof estimate1.28K. Neithertheslopenor the interceptdiffer

from thoseappearingin eqn.(4)at 9-percentconfidencelevel.Theinterceptandslopeof eqn.

(4) donot differ from thoseappearingin eqn.(7)at9-percentconfidencelevel.

A linear model for PD vs. exp (-0.0035P) wasassumedby Choudhury(1989) and in the

aboveanalysis.To checktheadequacyof sucha model,fig. 15showstheplot of residuals

(thedifferenceof observedandpredictedPDcorrespondingto any rainfall value)againstthe

predictedPDbasedoneqn.(7).Theseresidualsdonotshowanysystematicpatternof scatter
about the zero value, illustrating no obvious defect in the model. Also, the normality

assumptionfor linear regressionwould require6 percentof thestandardizedresidualsto be

within -1 and+1, while 9 percentof theresidualsto bewithin -2 and+2. In thepresentcase,

we find that 7 percentof standardizedresidualsarewithin -1 and+I, while 9 percentto be
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between -2 and +2. Thus, the data satisfy fairly well the normality assumptionof linear

regression.

Thecorrelationcoefficientsfor all casesaresignificantatbetterthanonepercentlevel,andthe

slopeandinterceptof theregressionfor differentrainfall datasets(two climatologicand one
concurrent)andfor differentscreeningsdonotdiffer at 9-percentconfidencelevel. Thus,the
relationbetweenPD andrainfall is notdistinguishablefor different climatologicrainfall and

1979-1985averagerainfall datasets.The slopeof theregressionline do not differ, but the

interceptdodiffer at 9-percentconfidencelevel from thosecalculatedby Choudhury(1989).

The present analysis based on quantitative methods for data selection on three rainfall data sets

(two climatologic and one concurrent) confirms the non-linear relation between PD and rainfall

obtained by Choudhury (1989) with highly significant correlations. The present analysis

disputes poor correlation between PD and rainfall found by Tucker (1992).

The calculated high correlation (r 2 > 0.8) between PD and rainfall and statistically

indistinguishable nature of the relations obtained using both climatologic rainfall and 1979-

1985 average rainfall do suggest that the magnitude of PD could be used as an estimator for

surface characteristics determined by the rainfall amount averaged over a number of years.

Analyses presented by Eagleson and Tellers (1982), Woodward (1987), Le Houerou (1989),

among others, show that long-term average rainfall could be a major determinant of such

surface characteristics as fractional ground cover, productivity and leaf area index. Recognizing

the unavailability of quantitative data for surface characteristics at coarse spatial resolution of

PD, the relation established here between PD and rainfall (averaged over several years) could

provide a starting point for relating PD to surface characteristics. Choudhury (1990, 199 I) has

suggested that fractional ground cover could be an important surface characteristic determining

PD (see also fig. 2.6A in Shmida, 1985).

It is unfortunate that several stations in the concurrent rainfall data set with rainfall less than

200 mm got rejected under Levels 2 and 3 screenings. While true deserts are considered to be

areas receiving less than 100 mm rainfall (long-term average per annum), the transition area

receiving 100-400 mm rainfall is quite sensitive to anthropogenic pressure, which can lead to

large-scale major changes of the land surface (Schlesinger et al., 1990). It will be desirable to

have more long-term average rainfall data in the range 0-200 satisfying the screening criterion

for a better definition of the rainfall-PD relationship.
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4. ATMOSPHERIC EFFECTS ON RAINFALL-PD RELATION

The above analysis showed that a statistically significant non-linear relation exists between

long-term average rainfall and PD such that PD decreases as rainfall increases. These PD

values are as observed by the satellite and thus include atmospheric effect. Although both cloud

and water vapor in the atmosphere affect the satellite data, the magnitude of the atmospheric

effect is determined primarily by the total precipitable water vapor, W (Choudhury et al.,

1992). Since it is commonly recognized that W is low (c. 15 mm) over low rainfall areas and

high (c. 45 mm) over high rainfall areas (Tuller, 1968), there is an implicit correlation between

the magnitude of the atmospheric effect that is associated with the PD at a particular rainfall

value. (Note however that locations of high precipitable water are not always the locations of

high rainfall, and interannual variation of rainfall could be larger than that for precipitable

water). An important question therefore is, can the relation between PD and rainfall arise purely

due to the atmospheric effects contained in the PD data?

The PD value at the surface (PDs) is approximately related to PD as (Choudhury et aL, 1992):

PDs = PD exp ( 2 t / m ) (8)

where t is the optical thickness of the atmosphere and m is the cosine of the incidence angle of

the radiometer (50°). The optical thickness can be calculated as (Choudhury et al., 1992;

Matzler, 1992; Westwater et al., 1990):

t = 0.037 + 0.0021 W + 0.16 L (9)

where W is precipitable water vapor (mm) and L is cloud liquid water content (mm).

From eqn. (8) and (9) one can see that PDs is always greater than PD and the relative increase

of PD is higher over the humid areas with cloudy skies as compared to the arid areas with clear

skies. If the relation between PD and rainfall is purely due to atmospheric effects, then PDs

will be independent of rainfall. (Note that there is no obvious physical basis to postulate that

PD is related to rainfall per se; our hypothesis is that PD is related to some surface

characteristics which is determined by long-term rainfall.)

Radiosonde data for precipitable water corresponding to the location of rainfall stations used in

the present analysis are not available so as to arrive at an atmospherically corrected relation
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betweenrainfall andPD(i.e., arelationbetweenPDsandrainfall). (Therelativehumidity data

givenin Muller (1982)cannotbeuseddirectlyto calculateprecipitablewaterbecauseof strong
diurnal variationof humidity.)Nevertheless,a first-orderassessmentof the magnitudeof the

atmosphericeffectfor clearskies(L=0) canbeperformedusingsurfaceobservationsof vapor

pressure(NOAA Monthly Climatic Data of the World, Asheville, North Carolina) and
empiricalrelationsbetweenvaporpressureandprecipitablewater(Monteith,1961;Idso, 1969;

BenMohamedandFrangi,1983).Thisassessmentfor aselectednumberof stationsis givenin

Table5. Theratio ( PDs/ PD ) at the low end of the rainfall is about 1.23, while at the high end

of the rainfall it is about 1.48. These results show that the atmospheric effect essentially

decreases the range of PDs in going from the low to the high end of the rainfall compared to

that for PD. From eqns. (7-9) we calculate the ratio [ PD (P=0) / PD (P=2000) ] = 5.0, while

[ PDs (P=0) / PDs (P=2000) ] = 4.1. Considering this 2-percent reduction in the range of

polarization difference we conclude that atmospheric correction to PD should generally be

performed for a quantitative interpretion of PD-rainfall relation in terms of surface

characteristics.

The above calculations of atmospheric effect on PD did not consider the effect of clouds, and

one may suggest that low PD values observed over the rainforest areas are due to very dense

clouds. Such a possibility is very unlikely considering the data shown in figures 1 and 4b. If

low PD values over rainforest are due to dense clouds then such clouds would have to appear

systematically two or three pixels away from the ocean coast (fig. 1) and such clouds would

have to dissipate systematically over the Zaire river and Lake Leopold II (fig. 4b). We are not

aware of any fundamental physical principle governing such systematic occurrences of dense

clouds and indeed, METEOSAT and AVHRR observations do not show such systematic

occurrences of dense clouds. Also, one can calculate from eqns. (7-9) that the cloud liquid

water content (L) would have to be about 2.8 mm for [ PDs (P=0) / PDs (P=2000) ] = 1, and

this liquid water content needs to occur at the spatial scale of 37-GHz observations for the

period 1979-1985. The compositing procedure for PD (i.e., the second lowest value occurring

during a month) would require a common occurrence of cloud liquid water content higher than

2.8 ram. A cloud liquid water content of 2.8 mm occurring regularly (in a temporal sense; e.g.,

for each month for seven consecutive years in the context of present analysis) at the spatial

resolution of PD data (c. 25 km) has not yet been documented for non-precipitating clouds, and

the observed values are generally less than 0.3 mm (Grody et al., 1980; Prabhakara et al.,

1983; Takeda and Liu, 1987; Jones and Vonder Haar, 1990; Lojou et al., 1990; Curry et al.,

1990; Matzler, 1992). Thus, atmospheric effects cannot explain eqn. (7), although these effects

should be considered for a quantitative interpretation of this equation in terms of land surface
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characteristics.A morecritical discussionof atmosphericeffectson seasonalandinterannual

variationsof PDmaybe foundin Choudhuryet al. (1992).

5. ANALYSIS FOR SAHEL AND SUDAN ZONES

The nature of drought over the Sahel and Sudan zones and its possible impact on the relation

between PD and rainfall have been discussed above. Figure 7 showed that both PD and visible

reflectance increased with increasing rainfall deficit, although there are some systematic

differences in their relationships for interannual variations. Tucker (1992) found poor

correlations (r 2 value 0.31 and 0.45 depending upon rainfall range) for linear regressions

between PD and rainfall for 41 locations in Niger and Mali with the average data for July-

October, 1982-1985. The correlation (r 2) for individual years ranged 0.10-0 to 51.

A scatter plot of PD and rainfall (exp(-0.0035 P)) for all rainfall stations within 12°N - 19°N

with complete records for 1979-1985 which passed Level 1 screening (33 stations) is shown in

fig. 16. A linear regression analysis of the data in fig. 16 gave r2 = 0.87, with slope and

intercept being, respectively, 22.2 and 9.8. The correlation between PD and rainfall is

substantially higher than that found by Tucker (1992). This figure also shows the relation

derived for data in figs. 13 and 14 (eqn. 7). The PD values over this drought affected region

are seen to be consistently higher than those expected from eqn. 7 (the intercepts differ at 9-

percent confidence level). The data values in this figure are for a much larger area than those of

Tucker (1992), but the number of data points is less than that for Tucker because a majority of

stations did not have complete rainfall records for 1979-1985. The data values in fig. 16 have

not been subjected to Level 2 screening, and thus the higher PD values in figure 16 could be

suggested to be because of systematic water contamination of the PD data. Indeed, one can see

from Table 1 that many of the stations situated within this area would be rejected under Level 2

screening. However, an examination of the station locations for the data appearing in fig. 16

showed that exposed water is not likely to be the factor contributing to consistently higher

values of PD seen in this figure (see also fig. 7). These high PD values are most likely the

result of land surface change due to drought. This figure provides some indirect evidence that

the relation between rainfall and surface characteristics under drought conditions could be much

different from that in the absence of drought, which needs to be further studied.

There could be several reasons for poor correlations found by Tucker (1992) and high

correlation between PD and rainfall reported above using all rainfall stations with complete
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records.It hasbeennotedthatchangesin thesurfacecharacteristicsmaynotbeproportionalto

or synchronouswith thechangesin rainfall (fig. 7). Monthly andannualvaluesof rainfall are

muchlessrepresentativeof thesurfacecharacteristicsthantherainfall valuesaveragedovera

numberof years (Le Houerou, 1989).Perhapsmore important is the questionof spatial

representativenessof monthlyandannualrainfall valuesof Sahelianstationsin relationto the

spatialresolutionof thePDdata(c. 25km). Observationsshowthatseasonaltotal rainfall can

differ by 180mm at a distanceof 10km asillustratedin figure 17(Lebel et al., 1992), and

variograms of seasonal total rainfall for 1990 and 1991 over 100xl00 km area around Niamey

(Niger) after accounting for the north-south rainfall gradient show that the rainfall values

become uncorrelated at a distance of 10-30 krn as illustrated in figure 18 (Lebel et al., 1991;

Taupin et al., 1992). Certainly, such high spatial variability of rainfall is expected to introduce

much scatter when PD is plotted against seasonal total rainfall observed at station locations and

thus can result in poor correlations. Choudhury (1989) and the present analysis considered the

relation between rainfall and PD averaged over a number of years, since a relation between

rainfall and surface characteristics is much better defined when averaged over a number of

years, as noted by Le Houerou (1989). The poor correlations between PD and rainfall reported

by Tucker (1992) could be due to the spatially unrepresentative nature of the rainfall values as

compared to the PD data for short time durations.

The results of analysis based on three rainfall data sets and also concurrent data over the Sahel

and Sudan zones presented above clearly demonstrate that long-term average PD is highly

correlated with the average rainfall.

6. SUMMARY AND CONCLUSIONS

Interpretation of coarse resolution satellite data in terms of surface characteristics presents

considerable difficulty because of a lack of spatially and temporally representative data for

surface characteristics. Undei" certain limited circumstances rainfall may be used as a proxy

measure for surface (soil-litter-vegetation) characteristics, and it is in this regard that a relation

between PD and long-term rainfall was sought by Choudhury (1989) and in this paper. If a

statistically significant relation can be found between PD and rainfall, then such a relation could

provide a starting point for relating PD to appropriate surface characteristics.

All rainfall data cannot be used to correlate with PD because, (1) relation between rainfall and

surface characteristics under drought conditions (or anthropogenic impact) could be much
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different from that in theabsenceof drought (or human interference; natural vegetation being

replaced by agricultural crops), and (2) factors other than soil, litter and vegetation affect PD.

Quantitative methods were developed and used in this paper to screen the PD data considering

antenna pattern, geolocation uncertainty, exposed water, surface roughness, and systematic

land surface change. Rainfall data considered in this study were two data sets of climatologic

mean values and one data set concurrent with the PD data (1979-1985) for Africa and

Australia. These three rainfall data sets are to a degree, independent data sets. All rainfall data

have been used in the present analysis and no screening has been applied to the rainfall data.

Selection of rainfall stations for correlation with PD has been done considering only the

location of rainfall stations, and the screening methods did not a priori assumed the existence of

any relation between PD and rainfall. There was no observer bias or fine tuning involved at

Level 1 (effects of antenna pattern and geolocation uncertainty on PD) and Level 3 (effects of

systematic land surface change due to natural or anthropogenic causes on PD) screenings.

Uncertainty at Level 2 screening (effects of small water bodies and surface roughness on PD)

has been recognized and was addressed through sensitivity analysis. Whereas Choudhury

(1989) had used subjectivity for these screenings in the selection of rainfall stations, we have

used quantitative methods in the present study.

The present analysis gave statistically significant (r 2 > 0.8) non-linear relationships between

PD and rainfall (climatologic and 1979-1985 average), although the intercepts and the slopes of

these relations were not different at 9 percent significance level (Student's t test). The slopes of

the present relations generally did not differ, but the intercepts did differ at 9-G28

percent confidence level from the relationship obtained previously by Choudhury (1989). An

analysis of the residuals showed no obvious defect in the assumed linear model for the relation

between PD and exponential transform of rainfall. Based on the calculated coefficient of

determination obtained in this study, a hypothesis of no relation between PD and rainfall can be

rejected at better than 9 percent confidence for all three rainfall data sets. The results of present

analysis contradict "weak relation" between PD and rainfall found by Tucker (1992).

However, the total number of stations passing all screening levels is about 1 percent of the

original data base, which clearly shows the limited region over which PD was directly related

to rainfall. This limited region of applicability is somewhat biased because about 4 percent of

the stations in the climatologic rainfall (Muller) and about 6 percent of the stations in the

concurrent rainfall data sets got rejected at Level I screening for being situated close to ocean or

major lakes, although these rejected fractions are substantially higher than the fraction of

coastal areas for these continents. We did not investigate the capability of the derived PD-

rainfall relationship to predict long-term average rainfall from the 1979-1985 average PD data,
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anduntil suchcapabilityis testedagainstanindependentrainfalldatasetoneshouldnotusethe
relationbetweenPD andrainfall asa predictorof rainfall. We note thatthere is noobvious

physical basisto postulatethat PD is relatedto rainfall per se;our hypothesisis that PD is
relatedto somesurfacecharacteristicsdeterminedby long-termrainfall. By evaluatingthe

atmosphericeffect on PD, we concludedthat atmospheric effect alone cannot explain the

observed relation between PD and rainfall, although this effect should be considered for a

quantitative interpretation of the relation in terms of surface characteristics.

The present analysis was limited to only Africa and Australia. It will be interesting to evaluate

long-term average rainfall data from other locations (continents) where snowcover is not an

important consideration and the data satisfy the screening criterion to assess the generality of

the present relationship between PD and long-term average rainfall. Further evaluation and

research are also needed for the screening methodologies used in this study (in particular the

screening methodology for rough terrain and exposed water from rivers and lakes; the Level 2

screening). Then, we need to understand the relation between PD and rainfall in terms of

appropriate surface characteristics.

The global monthly data set of 37-GHz polarization difference from January 1979 to August

1987 from Nimbus-7 SMMR observations and from July 1987 to December 1990 from DMSP

SSM/I observations has been archived for public distribution. This data could be acquired by

writing to: Polarization Difference Vegetation Index, Pilot Land Data System, Code 934, Data

Management Systems Facility, NASA/Goddard Space Flight Center, Greenbelt, MD 20771,

USA.

7. ACKNOWLEDGEMENTS

Dr. C. Prabhakara of the Climate and Radiation Branch of Goddard Space Flight Center

provided the initial idea and approach for using spatial variability to screen for mountainous

and water contaminated pixels. We have also benefitted from other discussions with Dr.

Prabhakara.

27



8. REFERENCES

Acton, F. S., 1963, Analysis of Straight-Line Data (New York: John Wiley).

Adejuwon, J. O., Balogun, E. E. and Adejuwon, S. A., 1990, On the annual and seasonal

patterns of rainfall fluctuations in sub-Saharan west Africa. International Journal of

Climatology, 10, 839-848.

Anthes, R. A., 1984, Enhancement of convective precipitation by mesoscale variations in

vegetation covering in semi-arid regions. Journal of Climate and Applied Meteorology,

23, 541-554.

Beckman, P., 1968, The Depolarization of Electromagnetic Waves (Boulder: Golem).

Ben Mohamed, A. and Frangi, J. -P., 1983, Humidity and turbidity parameters in Sahel: A

case study for Niamey (Niger). Journal of Climate and Applied Meteorology, 22,

1820-1823.

Choudhury, B. J., 1989, Monitoring global land surface using Nimbus-7 37-GHz data.

Theory and examples. International Journal of Remote Sensing, 10, 1579-1605.

Choudhury, B. J., 1990, A comparative analysis of satellite-observed visible reflectance and

37-GHz polarization difference to assess land surface change over the Sahel zone,

1982-1986. Climatic Change, 17, 193-208.

Choudhury, B. J., 1991, Multispectral satellite data in the context of land surface heat balance.

Reviews of Geophysics, 29, 217-236.

Choudhury, B. J., 1992, Multispectral satellite observations for arid land studies. ISPRS

Journal of Photogrammetry and Remote Sensing, 47, 101-126.

Choudhury, B. J. and Nicholson, S. E., 1992, Synergistic use of multispectral satellite data

for monitoring arid lands. Chapter 6. In.: TERRA-1., ed. P. Mather, (New York:

Taylor & Francis).

28



Choudhury,B. J.,Wang,J.R., Hsu,A. Y. andChien,Y. L., 1990,Simulatedandobserved
37-GHzemissionover Africa. International Journal of Remote Sensing, 11, 1837-

1868.

Choudhury, B. J., Major, E. R., Smith, E. A. and Becker, F., 1992, Atmospheric effects on

SMMR and SSM/I 37-GHz polarization difference over the Sahel. International Journal

of Remote Sensing (in press).

Chukhlantsev, A. A. and Shutko, A. M., 1990, Use of a microwave radiometric method to

determine biometric characteristics of vegetation cover. Soviet Journal of Remote

Sensing, 7, 848-858.

Crafts, A. S., 1968, Water deficits and physiological processes. Chapter 3. In: Water Deficit

and Plant Growth, ed. T. T. Kozlowski, (New York: Academic Press).

Curry, J. A., Ardeel, C. D. and Tian, L., 1990, Liquid water content and precipitation

characteristics of stratiform clouds as inferred from satellite microwave measurements.

Journal of Geophysical Research, 95, 16659-16671.

Dennett, M. D., Elston, J. and Rodgers, J. A., 1985, A reappraisal of rainfall trends in the

Sahel. Journal of Climatology, 5, 353-361.

Eagleson, P. S., 1982. Ecological optimality in water-limited natural soil-vegetation systems,

1. Theory and hypothesis. Water Resources Research, 18, 325-340.

Eagleson, P. S. and Tellers, T. E., 1982, Ecological optimality in water-limited natural soil-

vegetation systems. 2. Tests and applications. Water Resources Research, 18, 341-

354.

Eagleson, P. S. and Segarra, R. I., 1985, Water-limited equilibrium of savanna vegetation

system. Water Resources Research, 21, 1483-1493.

Ferrazzoli, P., Guerriero, L., Paloscis, S., Pampaloni, P. and Solomoni, D., 1992, Modeling

polarization properties of emission from soil covered with vegetation. IEEE

Transactions Geoscience and Remote Sensing, 30, 157-165.

29



Ferraro, R. R., Grody, N. C. and Kogut, J. A., 1986, Classification of geophysical
parametersusing passivemicrowavesatellite measurements.IEEE Transactions

Geoscience and Remote Sensing, GE-24, 1008-1013.

Gates, C. T., (1968), Water deficit and growth of herbaceous plants. Chapter 4. In: Water

Deficit and Plant Growth, ed. T. T. Kozlowski, (New York: Academic Press).

Grier, C. C. and Running, S. W., 1977, Leaf area of mature northwestern coniferous forests:

Relation to site water balance. Ecology, 58, 893-899.

Grody, N. C., 1991, Classification of snow cover and precipitation using the special sensor

microwave imager. Journal of Geophysical Research, 96, 7423-7435.

Hallikainen, M. T., Jolma, P. A. and Hyyppa, J. M., 1988, Satellite microwave radiometry of

forests and surface types in Finland. IEEE Transactions Geoscience and Remote

Sensing, 26, 622-628.

Hare, F. K., 1985, Climate Variations, Drought and Desertification. WMO - No. 653. (World

Meteorological Organization: Geneva).

Idso, S. B., 1969, Atmospheric attenuation of solar radiation. Journal of Atmospheric

Sciences, 26, 1088-1095.

Jackson, T. J. and Schmugge, T. J., 1991, Vegetation effects on the microwave emission of

soils. Remote Sensing of Environment, 36, 203-212.

Jones, A. S. and Vonder Haar, T. H., 1990, Passive microwave remote sensing of cloud

liquid water over land regions. Journal of Geophysical Research, 95, 16673-16683.

Katz, R. W. and Glantz, M. H., 1977, Rainfall statistics, droughts, and desertification in the

Sahel. In Desertification, ed. M. H. Glantz (Boulder: Westview).

Kerr, Y. H. and Njoku, E. G., 1990, A semi-empirical model for interpreting microwave

emission from semi-arid land surfaces as seen from space. IEEE Transactions

Geoscience and Remote Sensing, 28, 384-393.

30



Lebel, T., Cazenave,F., Gathelier,R., Greard,M., Gualde,R., Kong, J. and Valero, T.,

1991,EPSAT-NIGERcampagne1990.ORSTON-DMN,Niamey,Niger.

Lebel, T., Sauvageot,H., Hoepffner, M., Desbois,M., Guillot, B. and Hubert, P., 1992,
Rainfallestimationin theSahel:theEPSAT-NIGERexperiment.Hydrological Sciences

Journal, 37, 201-215.

Legates, D. R. and Willmott, C. J., 1990, Mean seasonal and spatial variability in gauge-

corrected, global precipitation. International Journal of Climatology, 10, 111-127.

Levitt, J., 1980, Responses of Plants to Environmental Stresses. Vol. II. (New York:

Academic Press).

Le Houerou, H. N., 1984, Rain use efficiency - a unifying concept in arid land ecology.

Journal of Arid Environment, 7, 3-15.

Le Houerou, H. N., 1989, The Grazing Land Ecosystems of the Sahel (New York: Springer-

Verlag).

Lieth, H., 1975, Modeling the primary productivity of the world. In Primary Productivity of

the Biosphere, ed. H. Lieth and R. H. Whittaker (New York: Springer-Verlag).

Lojou, J. -Y., Frouin, R. and Bernard, R., 1991, Comparison of Nimbus-7 SMMR and

GOES-1 VISSR atmospheric liquid water content. Journal of Applied Meteorology,

30, 187-198.

Matzler, C., 1991, Seasonal evolution of microwave radiation from an oat field. Remote

Sensing of Environment, 31, 16t-173.

Matzler, C., 1992, Ground-based observations of atmospheric radiation at 5, 10, 21, 35, and

94 GHz. Radio Science, 27, 403-415.

Metz, H. C., 1989, Libya: A Country Study. U. S. Government Printing Office, Washington,

D.C.

31



Mo, T., Choudhury,B. J., Schmugge,T. J., Wang,J. R. andJackson,T. J., 1982,A model

for microwave emission from vegetation-coveredfields. Journal of Geophysical

Research, 87, 11229-11237.

Monteith, J. L., 1961, An empirical method for estimating long-wave radiation exchanges in

the British Isles. Quarterly Journal of Royal Meteorological Society, 87, 171-179.

Muller, M. J., 1982, Selected Climatic Data for a Global Set of Standard Stations for

Vegetation Science (Boston: Dr. W. Junk).

Neale, C. M. U., McFarland, M. J. and Chang, K., 1990, Land surface-type classification

using microwave brightness temperature from special sensor microwave/imager. IEEE

Transactions Geoscience and Remote Sensing, 28, 829-838.

Nicholson, S. E., 1985, Sub-Saharan rainfall 1981-1984. Journal of Climate and Applied

Meteorology, 24, 1388-1391.

Paloscia, S. and Pampaloni, P., 1992, Microwave vegetation indices for detecting biomass and

water conditions of agricultural crops. Remote Sensing of Environment, 40, 15-26.

Prabhakara, C., Wang, I., Chang, A. T. C. and Gloersen, P., 1983, A statistical examination

of Nimbus-7 SMMR data and remote sensing of sea surface temperature, liquid water

content in the atmosphere and surface wind speed. Journal of Climate and Applied

Meteorology, 22, 2023-2037.

Prince, S. D. and Choudhury, B. J., 1989, Interpretation of Nimbus-7 37-GHz microwave

brightness temperature data in a semi-arid region. International Journal of Remote

Sensing, 10, 1643-1661.

Rapp, A., 1986, Introduction to soil degradation processes in drylands. Climatic Change, 9,

19-31.

Reutov, E, A. and Shutko, A. M., 1990, Radio brightness temperature and radiative dryness

index. Soviet Journal of Remote Sensing, 7, 1044-1055.

32



Rowell, D. P., Folland,C. K., Maskell, K., Owen,J.A. andWard, M. N., 1992,Modelling

theinfluenceof globalseasurfacetemperatureson thevariability andpredictabilityof

seasonalSahelrainfall.Geophysical Research Letters, 19, 905-908.

Schlesinger, W. L., Reynolds, J. F., Cunningham, G. L., Huenneke, L. F., Jarrell, W. M.,

Virgiania, R. A. and Whitford, W. G., 1990, Biological feedbacks in global

desertification. Science, 247, 1043-1048.

Schmugge, T. J., 1985, Remote sensing of soil moisture, In: Hydrologic Forecasting, ed. M.

G. Anderson and T. P. Burt, (New York: John Wiley).

Shmida, A., 1985, Biogeography of the desert flora, Chapter 2. In: Hot Deserts and Arid

Shrublands, Part A., ed. M. Evenari, I. Noy-Meir and D. A. Goodall, (New York:

Elsevier).

Smith, R. C. G. and Choudhury, B. J., 1990, Relationship of multispectral satellite data to

land surface evaporation from the Australian continent. International Journal of Remote

Sensing, 11, 2069-2088.

Takeda, T. and Liu, G., 1987, Estimation of atmospheric liquid-water amount by Nimbus-7

SMMR data: A new method and its application to the western Pacific. Journal of

Meteorological Society of Japan, 65, 931-946.

Taupin, J. D., Lebel, T., Cazenave, F., Chiron, F., Gathelier, R., Greard, M., Gualde, R.,

Kong, J. and Valero, T., 1992, EPSAT-NIGER Campagne 1991. ORSTOM-DMN,

Niamey, Niger.

Terborgh, J., 1973, On the notion of favorableness in plant ecology. American Naturalist,

107, 481-501.

Tucker, C. J., 1992, Relating SMMR 37-GHz polarization difference to precipitation and

atmospheric carbon dioxide concentration: a reappraisal. International Journal of

Remote Sensing, 13, 177-191.

Tuller, S. E., 1968, World distribution of mean monthly and annual precipitable water.

Monthly Weather Review, 96, 785-797.

33



Wang, J. R., O'Neill, P., Engman, E., McMurtrey, J., III, Lawless, P., Schmugge, T.,

Jackson, T., Gould, W., Fuchs, J., and Glazar, W., 1982, Remote Measurements of

Soil Moisture by Microwave Radiometer at BARC Test Site, II. Technical

Memorandum TM-83954, National Aeronautics and Space Administration,

Washington, D.C., USA.

Waring, R. H., Emmingham, W. H., Gholz, H. L. and Grier, C. C., 1978, Variation in

maximum leaf area of coniferous forests in Oregon and its ecological significance.

Forest Science, 24, 131-140.

Westwater, E. R., Snider, J. B. and Falls, M. J., 1990, Ground-based radiometric

observations of atmospheric emission and attenuation at 20.6, 31.65 and 90 GHz: A

comparison of measurements and theory. IEEE Transcations on Antennas and

Propagation, 38, 1569-1579.

Williams, O. B. and Calaby, J. H., (1985), The hot deserts of Australia. Chapter 8. In: Hot

Deserts and Arid Shrublands, Part A, ed. M. Evenari, I. Noy-Meir and D. W. GoodaU,

(Elsevier: New York).

Woodward, F. I., 1987, Climate & Plant Distribution. (Cambridge University Press: New

York).

Zahner, R., (1968), Water deficit and growth of trees. Chapter 5. In: Water Deficit and Plant

Growth, ed. T. T. Kozlowski, (Academic Press: New York).

34



CAPTIONS TO THE FIGURES:

Figure 1 (a and b). Pixel values of 37-GHz polarization difference (PD) and surface

designation for two regions in Africa containing land and water (ocean) bodies. The

surface designation is based on a digital data set which identifies water, land/water mix

and land pixels at a spatial resolution of 0.25 °. Note that two land pixels and often the

third pixel bordering water (going perpendicular to ocean/land interface) have

systematically higher PD values compared to those situated further inland. The first

land pixel bordering water is generally a mixed pixel in the literal sense (fractional

coverage of land and water). High PD values for inland pixels bordering water are

generally due to the antenna pattern (radiometrically mixed pixels).

Figure 2. Schematic representation of water pixels, radiometrically mixed pixels (two pixels

bordering water) and 3x3 matrix of pixels centered on a rainfall stations. Level 1

screening determines the location of water pixel within the 9x9 matrix centered on a

rainfall station using a digital land surface data describing land, land/water mixed and

water pixels at 0.25 ° resolution (see fig. 1).

Figure 3. Field observations of 37-GHz brightness temperatures and polarization difference

over dry bare soil (a and c) and over grass at leaf area index (L) of 1.7 (b and c). Note

the strong dependence of polarization difference on the incidence angle for bare soil and

a lack of such dependence for vegetated surface. Such field observations and theoretical

studies provide the rationale for screening PD due to effects surface roughness, which

has a significant impact on PD values over desert areas (see text for the quantitative

methods used to screen at Level 2).

Figure 4. (a) Pixel values of PD and horizontally polarized brightness temperature across Air

mountain within the Sahara, and (b) across Zaire river and Lake Leopold II (Lac Mai-

Ndombe). Note in (a) that PD decreases and the brightness temperature increases in

going across topographic variation (surface roughness effect), while in (b) PD

increases and the brightness temperature decreases in going across water bodies. These

differing responses of PD and brightness temperature to surface roughness and

exposed water are consistent with field observations and theoretical studies. The ratio

of PD and horizontal polarization difference (normalized polarization difference or

NPD) has been used to screen PD values due to effects of topographic variation and

exposed water (see Table 1 and discussion for Level 2 screening).
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Figure5. The3x3matrixof normalizedpolarizationdifference(NPD) for severallocationsin

Africa from Muller (1982).Otherpertinentdatafor theselocationsmaybe found in
Table 1.Theratio of thehighestandlowestNPDwithin each3x3matrix centeredon

rainfall stationsis usedfor Level 2 screening.Theeffectof substantialexposedwater

within a pixel visible to SMMR would be to increasethe NPD valuecomparedto
neighboringpixelswithoutexposedwater.

Figure 6. Binary classification [accept(darkshade)or reject (light shade)]mapof Africa,

Middle Eastandapartof Europebasedonpixel-to-pixelcalculationof thevariability

index (V) of either 1.25(a)or 1.3(b). High V values(light shade)areseento appear

generallyin mountainousareas(roughterrain)with little vegetationandfor exposed

water due to rivers, lakes,swamps,etc.This variability index is used for Level 2
screening.

Figure7. Annualaveragevaluesof rainfall deficit percent(departurefrom climatologicmean
calculatedusingall reportingstationswithin theregion),PD, andvisible reflectance

(derivedfrom observationsby theadvancedveryhigh resolutionradiometeron board
NOAA satellites)for two areaswithin theSahelandSudanzonesof Africa. Note that

(1) interannualvariationof thesesatellitedataarenotproportionalto thecorresponding

variationof rainfall deficits,and(2) the occurrenceof highestrainfall deficit during
1984doesnot matchtheoccurrenceof the highestPD or reflectancefor the Sudan

zone,althoughthe highestvaluesfor bothof thesesatellitedataoccurduring 1985.

Theseindependentsatelliteobservationsprovideevidencefor land surfacechange

which maynot beproportionalto or synchronouswith rainfall variationsparticularly
underdroughtconditions.Relationbetweenrainfall andsurfacecharacteristicsunder

droughtconditionscouldbemuchdifferent from thatin theabsenceof drought.The

slopeof themonthlyPD valuesfor 1979-1985wastestedfor non-zerovalueto assess

anysystematiclandsurfacechange(Level3screening).

Figure 8. Scatterplot of PD and climatologic rainfall valuesfor Africa (filled circle) and

Australia (opensquare)from Muller (1982)for (a)datavaluesfor Africa beforeany

screening,(b) afterLevel 1screeningdoneto excludestationssituatedcloseto large
waterbodies,(c) afterLevel 2A screeningdoneto excludestationsfor which thePD

valuesareaffectedby surfaceroughnessandexposedwater(lakesandrivers),and(d)

after Level 3 screeningdoneto excludestationswith systematiclandsurfacechange
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(temporaltrenddeterminedfrom linearregression).Quantitativemethodsusedfor each
screeningarediscussedin thetext.Eachscreeninghasbeendoneconsideringonly the
locationof rainfall stations;the rainfall valueshavenot beenusedfor screeningany

data.Noneof thescreeningmethodshavea priori assumed the existence of any relation

between PD and rainfall.

Figure 9. Scatter plot of climatologic rainfall data set from Legates and Willmott (1990) of PD

and rainfall for Africa and Australia for (a) after Level 1 screening, (b) after Level 2A

screening, and (c) after Level 3 screening.

Figure 10. Scatter plot of concurrent data sets of PD and rainfall for Africa and Australia for (a)

after Level 1 screening, (b) after Level 2A screening, and (c) after Level 3 screening.

Figure 11. Scatter plot of climatologic rainfall (from Muller) and PD for (a) after Level 2B

screening, and (b) after Level 3 screening. Note that these data values are a sub-set of

those appearing in figure 8 (c and d).

Figure 12. Scatter plot of climatologic rainfall (from Legates and Willmott) and PD for (a) after

Level 2B screening, and (b) after Level 3 screening. Note that these data values are a

sub-set of those appearing in figure 9 (c and d).

Figure 13. Scatter plot of concurrent data sets of PD and rainfall for (a) after Level 2B

screening, and (b) after Level 3 screening. Note that these data values are a sub-set of

those appearing in figure 10 (b and c).

Figure 14. Scatter plot of PD and exponential transform of rainfall (exp (-0.0035 P)) for all

data points which have passed the screening criterion (Levels 1, 2B and 3). The results

of regress'ion analysis are given in the text (eqn. 7). • .... "_ .... _ ' ""

Figure 15. Scatter plot of residuals and predicted PD corresponding to the data in fig. 14. This

figure shows that there is no obvious defect in the assumption of a linear model for PD

vs. exp (-0.0035 P). The data for Africa and Australia are shown by the same symbol.

Figure 16. Scatter plot of PD and rainfall (exp (-0.0035 P)) for all stations within 12°N - 19°N

having complete rainfall records for 1979-!985 which passed Level 1 screening. This

figure also shows the relation derived from data in figure 14 (eqn. 7). Systematically
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higher values of PD for the rainfall stations within this region are most likely due to

land surface change resulting from a rather prolonged drought, which need to be further

studied and confirmed. Note the high correlation between PD and rainfall, which is

significantly at variance from poor correlation reported by Tucker (1992).

Figure 17. Detailed map of the 1990 seasonal cumulative rainfall over an area close to Niamey,

Niger. A difference of 183 mm is observed over a distance less than 10 km.

Figure 18. Variograms of seasonal total rainfall after accounting for the north-south rainfall

gradient over 100xl00 km area around Niamey (Niger) for (a) 1990 season, and (b)

1991 season. Seasonal total rainfall observed at a rainfall station is not likely to be

representative of the average rainfall at the spatial resolution of the PD data. Tucker

(1992) had used these spatially un-representative rainfall data to find poor correlations

between July-October averages of PD and rainfall for individual years.
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POLARIZATION DIFFERENCE (K) x i0

3°N

I_N

9°E

I

12°E

I

WATER LAND

480 274 064 044 044 043 043 043 043 043

472 218 054 045 045 042 044 043 045 042

471 200 051 044 047 046 046 046 045 044

468 178 050 046 045 044 046 045 045 045

369 113 048 049 047 045 044 045 045 045

--- 451 210 063 049 047 047 047 046 047 047 046

--- 374 139 067 048 049 047 045 046 043 044 043

--- 456 234 086 051 048 047 044 044 044 044 040

SURFACE DESIGNATION (--- Water; /// - Mixed ; iii - Land)

3°N

I°N

9°E

/// iii iii iii ill iii iii lll iii iii

/// ill iii iii iii iii Iii iii iii iii

/// Iii iii iii iii iii Iii iii iii iii

/// iii iii iii iii iii iii iii iii iii

/// iii iii iii iii iii iii iii iii iii

/// /// iii iii iii iii Iii iii iii iii iii

/// iii iii iii iii iii iii iii iii iii iii

/// /// iii iii iii iii iii iii iii iii iii
12°E

Mixed (Fractional Coverage of Land and Water)

Figure la
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POLARIZATION DIFFERENCE (K) x i0

7°N

4°N

10°W

I
7°W

I

050 049 049 048 046 044 046 046 043 043 044 053

047 049 048 045 046 045 045 044 041 042 050 071

052 049 045 044 043 043 042 044 042 042 048 074

089 051 044 043 042 042 043 044 042 042 042 041

266 087 048 044 043 041 042 042 041 041 042 041

466 295 098 049 043 041 042 044 041 043 045 042

474 299 112 056 044 044 045 044 045 045 045

485 365 201 085 052 046 045 047 045 043

456 327 187 089 063 053 055 079

494 447 354 245 150 174 296

480 435 445 498

SURFACE DESIGNATION (--- Water; ///- Mixed ; Iii- Land)

7°N

4°N

IIi iii III iii iii iii iii Iii iii iii iii Iii

iii iii III Iii III iii iii iii iii iii iii Iii

iii iii IIi iii iii Iii iii iii IIi iii iii IIi

iii IIi iii IIi iii iii iii Iii iii IIi iii iii

/// Iii iii iii iii iii Iii Iii iii iii Iii iii

/// /// iii iii III iii iii Iii Iii iii III iii

/// /// iii iii iii iii iii iii iii iii Iii

/// /// Iii iii iii Iii iii iii iii Iii

/// /// iii iii IIi IIi iii IIi

/// /// /// iii Iii iii iii

III III III III

10°W 7°W

Mixed (Fractional Coverage of Land and water)

Figure Ib
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3X3 NORMALIZED POLARIZATION DIFFERENCE MATRIX (x3000)

Adrar Sabahah Mut

319 313 305 341 295 257 293 262 265

333 314 300 257 240 231 293 270 264

338 310 289 224 222 216 282 281 265

AI-Uqsur Dunqulah Garissa

236 208 208 282 283 293 082 089 089

236 203 204 295 304 320 084 090 091

247 224 207 285 302 326 085 092 094

Eala Tshibinda Harar

100 121 065 071 241 350 058 059 076

117 106 072 065 119 105 054 058 106

108 063 061 059 063 066 060 057 069

Addis Abeba Jima Ai-Kufra

072 074 074 057 059 055 277 307 329

082 084 083 057 055 056 306 324 335

085 088 094 056 055 052 332 346 332

Bobo Dioulasso Ar-Rusayris Kinshasa

090 094 089 078 093 075 078 162 116

084 084 080 078 130 091 070 083 063

076 073 071 074 ii0 103 061 052 052

Figure 5
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Figure 6a
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Figure 6b
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Table i. The index of spatial variability (V) computed as the ratio of

the highest and the lowest values of the normalized polarization

difference (NPD) occuring within the 3x3 matrix centered on some of the

rainfall stations in Africa (Muller, 1982). This variability index in

used for Level 2 screening for roughness and exposed water. Geographical

setting of the location (mountainous area/ close to water bodies) as

assessed subjectively from The Times and National Geographic Atlases of

the World is given in the Comment column, although these settings were

found not to be repeatable identically in different trials.

Station Name

Gafsa

Ghudamis

Zauia el Kahla

Tindouf

Sabahah

Tamanrasset

Tessalit

Addis Abeba

Jima

Enugu

Bouar

Negelli

Dagoretti

Morogoro

Kamina

Mongu

Tananarive

Umtali

Windhoek

Latitude/Longitude Rainfall Variability

(mm) Index (V)

34.4°N/8.9°E

30 l°N/9.7°E

28 I°N/6.7°E

27 7°N/8. l°W

27 0°N/14.5°E

22 7°N/5.5°E

20 2°N/I.0°E

9.0°N/38.8°E

7 7°N/36.9°E

6 5°N/7.6°E

5 9°N/15.6°E

5 l°N/39.4°E

1 3°S/36.9°E

6 8°S/37.7°E

8 7°S/25.0°E

15.3°S/23.2°E

18.9°S/47 .5°E

19 .0°S/32 .7°E

22 .6°S/17 .l°E

160

27

29

33

8

44

96

1256

1529

1784

1572

55O

1086

892

1343

972

1393

756

370

1.726

1.272

1.480

1.275

1.579

1.544

1 283

1 306

1 135

1 103

1 135

1 291

1 086

1 192

1 iii

1 747

1 461

1 500

1 205

Comment

Rough

v!
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Station Name CommentLatitude/Longitude Rainfall Variability

(mm) Index (V)

Mahalatswe

Keetmanshoof

Mokhotlong

23 i°S/26.8°E

26 6°S/18.1°E

29 3°S/29.1°E

A1 Uqsur (Luxor) 25 7°N/32.7°E

Dunqulah

Gao

Ai-Khartoum

Kayes

Mopti

Abeche

Niamey

Sokoto

Kano

Ar Rusayris

Bougouni

Harar (Haratu?)

Malakal

Garoua

Moundou

Makurdi

Waw

Juba

Bangui

Yangambi

Eala

19 2°N/30.5°E

16 3°N/0 •l°W

15 6°N/32.5°E

14 4°N/ll. 4°W

14 5°N/4.2°W

13 8°N/20.8°E

13 .5°N/2 •l°E

13 .0°N/5 .3°E

12 .l°N/8.5°E

ii .9°N/34.4°E

ii .4°N/7 .5°W

9 7°N/36.8°E

9 6°N/31.6°E

9 3°N/13 •4°E

8 6°N/16.1°N

7 7°N/8.6°E

7 7°N/28.1°E

4 9°N/31.6°E

4 4°N/18.6°E

0 8°N/24.5°E

0 0°N/18.3°E

511

147

586

1

23

270

164

746

543

5O5

584

689

873

770

1078

889

783

1015

1228

1405

1145

982

1560

1828

1794

1 160

1 161

1 307

1 217

1 156

1 225

1.468

1 545

1 276

1 252

1 264

1 286

1 152

1.757

1.246

1.963

1.250

1.471

1 338

1 393

1 227

1 292

1 423

2 114

1 984

Water

II
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Station Name

Garissa

Tshibinda

Kinshasa

masama

Nova Lisboa

Nova Freixa

Lusaka

Wankie

Maun

Upington

Adrar

Mut

AI-Kufrah

Atar

Bilma

Largeau

Nema

Zinder

A1 Fashir

Ai-Ubayyid

Ouagadougou

Kandi

Bobo Dioulasso

Birao

Mamou

Latitude/Longitude Rainfall Variability

(mm) Index (V)

0 .5°S/39.6°E

2 .3°S/28.7°E

4 .3°S/15.3°E

I0 2°S/31.0°E

12 8°S/15.7°E

14 8°S/36.9°E

15 4°S/28.3°E

18 4°S/26.5°E

20 0°S/23.4°E

28 4°S/21.3°E

27 9°N/0.3°W

25 5°N/29.0°E

24 2°N/23.4°E

20 5°N/13 .l°W

18 7°N/13 .4°E

18 0°N/19 .2°E

16 6°N/7.5°W

13 9°N/9.0°E

13 6°N/25.3°E

13 2°N/30.1°E

12 4°N/l .5°W

ii l°N/2.9°E

ii I°N/4.3°W

I0 3°N/22.8°E

i0 3°N/12 .1°W

298

1833

1378

1245

1386

889

837

592

471

204

18

1

2

106

22

3O

288

529

304

383

897

1042

1113

860

1963

1.146

5.932

3.115

1 143

1 746

1 085

1 869

1 200

1 136

1 123

1 170

1 118

1 249

1 243

1 171

1 152

1 230

1 152

1 124

1 128

1.257

1.229

1.324

1.125

1.094

Comment

I!

Homogeneous

11
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Station Name

Jos

Tamale

Bouake

Bria

Yubo

Batauri

Bongabo

Gulu

Mitzic

Tabora

Kananga

Teixeira

Lubumbashi

Ndola

Cangamba

Blantyre

Mupa

Tsumeb

Bulawayo

Ghanzi

Messina

Pietersburg

Gaborone

Kimberly

Latitude/Longitude

9 9°N/8.9°E

9 3°N/0 • 9°W

7 7°N/5.0°W

6 5°N/22 2°E

5 4°N/27 5°E

4 6°N/14 4°E

3 l°N/20 5°E

2 8°N/32 3°E

0 8°N/ll 6°E

4 0°S/32 8°E

5.9°S/22 4°E

i0 7°S/22 2°E

ii 6°S/27 5°E

13 0°S/28 6°E

13 7°S/19 9°E

15 7°S/35 0°E

16 i°S/15 9°E

19 2°S/17.7°E

20 i°S/28 6°E

21 7°S/21 6°E

22 3°S/30 0°E

23 8°S/29 4°E

24 7°S/25 9°E

28 8°S/24 8°E

Rainfall
(mm)

1414

1089

1210

1636

1455

1625

1810

1470

1842

892

1572

1341

1244

1169

1027

834

712

553

589

553

340

485

541

431

Variability

Index (V)

1.291

1.254

1.163

1.038

1 059

1 102

1 109

1 208

1 114

1 161

1 157

1 172

1 200

1 211

1 088

1 267

1 253

1 118

1 181

1 143

1.208

1.250

1.155

1.144

Comment
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Table 2. Results of trend analysis for monthly polarization difference

data for 1979-1985. Regression slopes and confidence limits for all

stations in Africa from Muller (1982) which passed Level 2A screening,

but was rejected at Level 3 screening. Stations with stars will not be

rejected at 99.9 percent confidence level. Latitude/logitude for these
locations may be found in Table i.

Location Name Slope Confidence Limit

(K / month) 99% 99.9%

Mut (**)

AI-Kufrah

Nema

Gao

Zinder

AI-Fashir

Ai-Ubayyid

Kano (**)

Garissa

Dagoretti

Bulawayo

Ghanzi

Windhoek

Mahalatswe

Gaborone

Keetmanshoof

Upington

Kimberly

-0 009

-0 025

0 036

0 075

0 064

0 070

0 090

0 024

0 031

0 016

0 O25

0 045

0 039

0 064

0 071

0 040

0 057

0 051

0 O08

0 008

0 025

0 044

0 045

0 033

0 037

0 019

0 013

0 010

0 019

0 032

0 025

0 022

0 022

0 017

0 021

0 023

0 010

0 010

0 032

0 057

0 058

0 043

0 048

0 025

0 017

0 013

0 025

0 041

0 032

0 028

0 028

0 022

0 027

0 030
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Table 3. Number of rainfall stations passing at different levels of

data screening for different rainfall data sets.

Screening Level Number of Stations

Africa Australia

Muller (1982) Climatologic Data:

Data Base 159 39

Level 1 95 18

Level 2A 54 9

Level 3 36 4

Level 2B 42 7

Level 3 28 3

Legates and Willmott (1990) Climatologic Data:

Data Base 3046 618

Level 1 1875 307

Level 2A 1023 177

Level 3 726 158

Level 2B 767 126

Level 3 573 115

1979-1985 Average Data:

Data Base 216 4221

Level 1 178 1398

Level 2A 100 817

Level 3 54 654

Level 2B 76 636

Level 3 43 507
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Table 4. Results of statistical analysis between PD and exponential
transform of rainfall (exp (-0.0035 P)) for data passing Level 3
screenings for different rainfall data sets. The confidence range for
slope and intercept at 99 percent level is given in the parenthesis,
together with standard error of estimate (SEE), coefficient of
determination (r 2) and number of data values (N). Further datails about
the data and screenings are given in the text.

Screening Slope Intercept SEE r 2 N

Muller (1982) Climatologic Data:

2A + 3 20.6 (2.8) 5.2 (0.2)

2B + 3 22.6 (2.5) 5.0 (0.9)

2.1 0.91 40

1.5 0.96 31

Legates and Willmott (1990) Climatologic Data:

2A + 3 20.6 (0.8) 5.5 (0.2) 1.7

2B + 3 21.1 (0.9) 5.3 (0.2) 1.6

0.84 884

0.84 688

1979-1985 Average Data:

2A + 3 20.1 (0.9)

2B + 3 20.5 (i.i)

5.1 (0.2) 1.3

5.1 (0.2) 1.3

0.81 708

0.82 550
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Table 5. Atmospheric effect on the SMMR 37-GHz polarization difference

for selected rainfall stations. Station name, latitude/longitude,

climatologic rainfall, surface vapor pressure, precipitable water vapor

calculated from the surface vapor pressure (Ben Mohamed and Frangi,

1983) and the ratio of polarization difference at surface and at

satellite (PDs/PD) are given.

Name Lat./Long.

Adrar

Kufra

Ouagad-

ougou 12.4°N/I.5°W

Bobo

Dioulasso ii.2°N/4.3 TM

Mitzic

Upington

Tennant

Creek

Giles

Charle-

ville

Enugu

Bria

Bangui

Bongabo

27.9°N/0 .3°W

24 .2°N/23 •3°E

0 .8°N/ii •6°E

28 .4°S/21 •3°E

19 .6°S/134 .2°E

25 .0°S/128 •3°E

26 .4°S/146 •2°E

6 5°N/7 •6°E

6 5°N/22 •2°E

4 4°N/18.6°E

3 l°N/20.5°E

Tshibinda 2 3°S/28.7°E

Kinshasa 4 3°S/15.3°E

Rainfall Vapor Precipitable Ratio

(mm) Pressure (kPa) Water (mm)

18 0.70 14 1.23

2 0.69 14 1.23

897 1.82 31 1.37

1113 1.80 30 1.36

1842 2.49 43 1.48

204 0.85 16 1.25

351 1.02 18 1.26

174 0.83 16 1.24

498 1.22

1784

1636

1560

1810

1833

1378

21 1.29

45 1.51

32 1.38

35 1.41

35 1.41

32 1.38

40 1.46

* from Tuller (1968)
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